
CSI 201 - Introduction to
Computer Science

Chapter 2
C++ Basics

Brian R. King
Instructor

1/28/2006 CSI 201 - Chapter 02 2

Goals
Introduce basic C++ constructs and concepts

including:
Variables and Assignments
Simple Input and Output
Basic Formatting of Output
Simple Data Types
Flow Control, including introducing boolean
expressions
Common terminology used in C++ and programming
in general.
Program Style

1/28/2006 CSI 201 - Chapter 02 3

Programming Language Rules
Languages need rules in order to be properly
interpreted.

Written English has rules that must be followed in
order to be properly interpreted.
Periods, commas, capital letters, etc. all determine
how a sentence is interpreted.

Programming languages also have rules that must be
followed for the program to be compiled properly. This
is referred to as the syntax of the language.

A program with legal syntax can be read by the
compiler, which will then generate executable code to
be run on the computer.

The syntax for a programming language is the set of
grammar rules for the language.

1/28/2006 CSI 201 - Chapter 02 4

Statements
A statement in C++ is the basic unit for building C++ programs.

A statement performs an action.
A complete program will be a series of C++ statements that direct the
computer to follow the statements in your code.

Statements end with a semi-colon
Statements do NOT end with the end of a line.

Example statements we saw in Chapter 1:
Variable declarations:

int first_num;

Assignment statements:
result = first_num + second_num;

Output statements
cout << "Your answer is: " << result;

There are many more to be seen!
A block-statement (or sometimes called statement block) is a grouping of
one or more statements delimited by the curly braces { }

The body of the main program in a C++ program is a block statement.

1/28/2006 CSI 201 - Chapter 02 5

Expressions
An expression is a grouping of variables, constants and/or operators
that specifies a computation.
An expression results in a value.
Examples:

Constant expression
300

Variable expression
first_num

Arithmetic expression
first_num + second_num

Many more to come!
An expression is NOT a statement!

Statements end in a semicolon
A statement may include several expressions.

Remember:
A statement performs an action
An expression produces a value

1/28/2006 CSI 201 - Chapter 02 6

Variables
Think of high school algebra.
Remember the quadratic formula?
What are x, a, b and c? Variables!
A variable in algebra is just a place
holder where you can substitute
different numbers in place of variables
on the right hand side of the equation to
generate a new value for the variable
on the left hand side.
In programming, a variable gives us a
way to tie a name to a place in memory
that can store data. (Otherwise, we
would have to use addresses to access
memory locations!)
With standard variables:

You can read the value in it.
You can write a value to it.
You can change the value of it.

a
acbbx

2
42 −±−=

1/28/2006 CSI 201 - Chapter 02 7

Declaring Variables in C++
A variable must be declared before it can be used.
A declaration of a variable provides:

The type of data that will be stored
The name of the variable, called an identifier

Types
Types are IMPORTANT! How a value is stored in memory depends on its type.

int – Integer; Whole numbers (e.g. -1, 10, 255)
double – Floating point number that can hold fractional parts (e.g. 40.345, -10.5, 100.1)

More complete list of types discussed later.
Identifiers

Choose meaningful names that represent the data to be stored.
Variable names have restrictions:

First character must be:
a letter
an underscore character

Remaining characters must be:
letters
numbers
an underscore character

Can not be a keyword, a reserved word that is used in the C++ language (e.g. if, else,
do, using, …)

1/28/2006 CSI 201 - Chapter 02 8

Examples of identifiers
Valid Examples
x
x_1

_abc

A2b
ThisIsAVeryLongIdentifier

Invalid Examples
12

3X

%change
myFirst.c

data-1

if

1/28/2006 CSI 201 - Chapter 02 9

Variable Declaration Syntax
The C++ syntax for a declaration is as
follows:

type_name variable_name1, variable_name2, … ;
Example variable declarations:
int hours_worked;

double hourly_wage, salary;

1/28/2006 CSI 201 - Chapter 02 10

More on Declaring Variables

Immediately prior to use
int main()
{

…
// Other code
…
int sum;
sum = score1 + score 2;
…
return 0;

}

At the beginning.
int main()
{

int sum;
…
sum = score1 + score2;

…
return 0;

}

Two locations for variable declarations

Both are acceptable forms of declaration. Do whatever will make
your program easier to understand.
Not sure which to use? If there are only a few statements that use a
particular variable, declare the variable prior to use. If a variable is
used throughout your program, then declare it at the beginning.
(Industry standards tend to declare variables at the beginning.)

1/28/2006 CSI 201 - Chapter 02 11

What happens during a declaration?
The compiler generates code to set aside memory to store the variable.

It associates the name of the variable with the address of the memory used for
the variable for you. You need not worry about where the variable resides.

Giving the variable a type allows your program to interpret the 0’s and 1’s
that reside in the memory set aside for the variable.
Each type has different memory requirements.

int
Requires 4 bytes of memory
Can store all values in the range -2147483647 to 2147483647

double
Requires 8 bytes of memory
Can store floating-point values in the range of 10-308 to 10308 with up to 15
digits of precision. (More on precision later.)

Other types to be discussed later.
IMPORTANT -- After a variable has been declared and memory has been
set aside, what value does the variable contain?

GRABAGE! Why? Because the variable has not been initialized! (It has
not been assigned a value.)

1/28/2006 CSI 201 - Chapter 02 12

Assignment Statements
An assignment statement changes the value of a variable

total_weight = one_weight + number_of_bars;
total_weight is set to the sum one_weight + number_of_bars

Formal syntax:
Variable = Expression;

The single variable to be changed is always on the left hand side of the assignment
operator ‘=‘

one_weight + number_of_bars = total_weight; is illegal!
The left hand side of an assignment must always be an addressable expression, sometimes
called an lvalue in computer science (which simply stands for the value on the left hand side
of an assignment.) Variables are the only lvalues we talk about until the end of the course.

On the right of the assignment operator is an expression
Valid expressions for the right side of an assignment statement can be:

Constants
age = 21;

Variables
my_cost = your_cost;

or an arithmetic expression
circumference = diameter * 3.14159;

1/28/2006 CSI 201 - Chapter 02 13

ex1.cpp
// ex1.cpp
// Simple program to illustrate some introductory concepts in C++

#include <iostream>
using namespace std;

int main()
{

int hours_worked;
double hourly_wage, week_salary;

// Input data
cout << "Enter the number of hours worked:\n";
cin >> hours_worked;
cout << "Enter your hourly wage:\n";
cin >> hourly_wage;

// Do calculation
week_salary = hours_worked * hourly_wage;

// Print output
cout << "You worked " << hours_worked << " hours.\n";
cout << "Your hourly wage is $" << hourly_wage << ".\n";
cout << "You earned $" << week_salary << " this week.\n";

return 0;
}

1/28/2006 CSI 201 - Chapter 02 14

Initializing a variable
A common mistake in C++ is using a variable
without initializing it to a known value.
Remember -- a variable has garbage in it after it’s
declared unless it’s been assigned a value.
How can we initialize a variable to a known value as
part of the declaration?

Method 1
double mpg = 26.3, area = 0.0, volume;

Method 2
double mpg(26.3), area(0.0), volume;

Method 1 is the preferred method for variables. (Method 2
is usually reserved for objects, to be covered in Chapter 6.)

1/28/2006 CSI 201 - Chapter 02 15

Input and Output through streams
C++ uses streams to handle input and output
to and from your program

A stream in C++ is a sequence of data.
An input stream handles data being fed into your
program.

Keyboard
File

An output stream handles data being generated
by your program.

Monitor / Screen
File

1/28/2006 CSI 201 - Chapter 02 16

Input
cin is an input stream bringing data from the keyboard.
It is made available to your program because of these lines in your program:
#include <iostream>
using namespace std;
The extraction operator (>>) removes (or extracts) data to be used from
the input stream and places it in the specified variable.
Example:

cout << "Enter the number of hours worked\n";
cout << "Then enter the hourly wage\n";
cin >> hours_worked >> hourly_wage;

This code above prompts the user to enter data and then reads data from cin.
The first value read is stored in hours_worked. Must be an integer!
The second value read is stored in hourly_wage
Multiple variables extracted must be separated by whitespace – space, tab,
newline (\n).

Data is not sent to your program until the ENTER (or return) key is pressed.
40 <SPACE> 12.50 <ENTER>
40 <ENTER> 12.50 <ENTER>

Both will work.

1/28/2006 CSI 201 - Chapter 02 17

Input Extraction
When extracting data for a variable, the following
rules apply:

Leading whitespace characters are skipped.
Characters are extracted from the input stream one-by-one,
as long as they satisfy the requirements of the input type.

integral types – leading sign, then one or more numbers
floating point types – leading sign, one or more
numbers, a decimal point, then one or more numbers
representing the fractional part

Extraction stops on one of the following conditions:
Another whitespace character occurs in the input stream.
A character that can not satisfy the type being extracted
occurs in the input stream. The character is left in the input
stream.

1/28/2006 CSI 201 - Chapter 02 18

Output
cout is an output stream connected to the screen (or monitor).
As with cin, it is made available to your program because of
these lines in your program:
#include <iostream>
using namespace std;
The insertion operator (<<) inserts data into the specified
output stream.
Example:

week_salary = hours_worked * hourly_wage;
cout << "You earned $" << week_salary << " this
week\n";

This code assigns a value to week_salary in the first
statement, then inserts the value formatted in a sentence to the
monitor.

Notice the space before the ‘t’ in “ this week\n”. Why?
The ‘\n’ causes a new line to be started following the ‘k’ in week.
A new insertion operator is needed for each item of output.

1/28/2006 CSI 201 - Chapter 02 19

Output (continued)
Instead of:
cout << "You earned $" << week_salary << " this week\n";

We could have used three separate C++ statements:
cout << "You earned $";
cout << week_salary;
cout << " this week\n";

Or one C++ statement, with three expressions on different lines:
cout << "You earned $"

<< week_salary
<< " this week\n";

We could have embedded an arithmetic expression instead:
cout << "You earned $"

<< hours_worked * hourly_wage
<< " this week\n";

Why is the last example possible?
Each operand to the right of an insertion operator is an expression.
Remember – each expression produces a result
Each expression is evaluated before it is inserted into the output stream

1/28/2006 CSI 201 - Chapter 02 20

Valid output expressions
Constants
cout << 21.5;

Variables
cout << week_salary;

Literal strings
A string is a sequence of characters. A literal string, also
called a string constant, is a string enclosed in double
quotation marks. More on strings later in the course.
cout << "CSI 201 is too early!\n";

Arithmetic expressions
cout << (hours_worked * hourly_wage);

Many more to come…

1/28/2006 CSI 201 - Chapter 02 21

Proper I/O Design
Prompt the user for input that is desired
cout << "Enter your age: ";
cin >> age;

Don't expect the user to know what your program
is asking for.

Echo the input by displaying what was read
Gives the user a chance to verify data
cout << age << " was entered." <<
endl;

1/28/2006 CSI 201 - Chapter 02 22

Escape sequences
Escape sequences tell the compiler to treat characters
in a special way

'\' is the escape character
So far, we've seen one escape sequence, the newline character: \n.

cout << "Hello, World!\n";

Common Escape Sequences
\n Newline
\t Tab
\a Alert (or Bell)
\\ Backslash
\” Quotation Marks

An alternative form exists for outputting a newline – endl
cout << “Hello, World!\n”;
cout << “Hello, World!” << endl;

These are both equivalent.

1/28/2006 CSI 201 - Chapter 02 23

Formatting numbers
Sometimes you may want to specify how you want your numbers to be
output.

Example: when you output money, you often want two significant digits after
the decimal (such as $1265.00.)

cout is an object that has some member functions that aid in
formatting output. (These OOP concepts will be taught later in the
course.)
cout.setf(ios::fixed);

Tells cout to output floating point values in fixed-point notation.
cout.setf(ios::showpoint);

Tells cout to output floating-point values always including the decimal point.
cout.precision(2);

Specifies the number of digits to output to the right of the decimal point.
(Seems to conflict with online reference definition? Go by my definition.)

The following link has most of the flags you can use as arguments to
the setf member function:

http://www.cplusplus.com/ref/iostream/ios_base/fmtflags.html

1/28/2006 CSI 201 - Chapter 02 24

ex2.cpp
// ex2.cpp
#include <iostream>
using namespace std;

int main() {
int hours_worked;
double hourly_wage, week_salary;

cout << "Enter the number of hours worked:\n";
cin >> hours_worked;
cout << "Now enter the hourly wage:\n";
cin >> hourly_wage;

// Do calculation
week_salary = hours_worked * hourly_wage;

// Format output
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

// Print output
cout << "You worked " << hours_worked << " hours.\n";
cout << "Your hourly wage is $" << hourly_wage << ".\n";
cout << "You earned $" << week_salary << " this week.\n";

return 0;
}

1/28/2006 CSI 201 - Chapter 02 25

Types - double vs. int
In C++, 2 and 2.0 are not the same number

A whole number such as 2 is of type int
A real number such as 2.0 is of type double

There are different ways to write double constants in
C++:

A number with a decimal point:
2.0

23.0859

Scientific Notation
3.41e1 (means 34.1)
3.67e10 (means 36700000000.0)
5.89e-6 (means 0.00000589)
Number to the left of "e" must be an integer

1/28/2006 CSI 201 - Chapter 02 26

Numeric Types

15 digitsApprox. 10-308 to 103088double

19 digitsApprox. 10-4932 to 10493210long double

7 digitsApprox 10-38 to 10384float

N/A-2147483647 to
2147483647

4long

N/A-2147483647 to
2147483647

4int

N/A-32767 to 327672short

PrecisionRangeSize in BytesType

short, int, long are "integer" types
float, double, long double are "floating-point" types.
Precision to be explained in class.

1/28/2006 CSI 201 - Chapter 02 27

Non-numeric types
char

Short for character.
A variable of type char holds a single character.
Example character variable declarations:

char symbol;
char letter = 'a';

Character constants have a single letter surrounded by SINGLE
quotation marks.

A single character between DOUBLE quotation marks has a string
type. A string is different than a character in C++!
"a" is a string of characters containing one character
'a' is a single char constant

1/28/2006 CSI 201 - Chapter 02 28

More on char
Each character has a numeric value.

'A' has the value of 65.
'a' has the value of 97.

To determine the numeric value of a character, you
would use an ASCII table. An ASCII code is the
numerical representation of a character such as 'a'
or '@'.
Appendix 3 in the book is an ASCII table containing
only printable characters and their numeric
equivalent.
http://www.asciitable.com/
The importance of the numeric value of characters
will become clear when we discuss strings and
string comparisons later.

1/28/2006 CSI 201 - Chapter 02 29

Reading characters
Consider the following:

char letter1, letter2;

cin >> letter1 >> letter2;

If the input was:
J D

What would letter1 and letter2 contain?

What value is stored in the memory location
reserved for these variables?

1/28/2006 CSI 201 - Chapter 02 30

ex3.cpp
// ex3.cpp
#include <iostream>
using namespace std;
int main()
{

char first, last, symbol;
cout << "Enter your first and last initial:\n";
cin >> first >> last;
cout << "The two initials are:\n";
cout << first << last << endl;
cout << "Once more with a space:\n";
symbol = ' ';
cout << first << symbol << last << endl;
return 0;

}

1/28/2006 CSI 201 - Chapter 02 31

ex3 – Sample Output
Enter your first and last initial:
B K
The two initials are:
BK
Once more with a space:
B K

What if we don't use a space when entering characters?
Enter your first and last initial:
BK
The two initials are:
BK
Once more with a space:
B K

The extraction operator operating on a char variable reads in one single
character. There is no need to skip any white space.

1/28/2006 CSI 201 - Chapter 02 32

Boolean type
bool

Short for boolean
Contains the value true or false

true and false are keywords in C++ that represent
boolean constants.
C++ introduced these keywords in the1995 Draft ANSI
Standard . They are not available in the C language.

Example declaration and use:
bool finished;
finished = false;

The actual value that is stored in memory for a
bool variable is a 1 for true and 0 for false.

1/28/2006 CSI 201 - Chapter 02 33

Type Compatibilities
Generally, the types of both sides of an assignment operator
must match:

int i;
i = 2.99; // Incompatible types

Some compilers will report an error, almost all will at least
report a warning.
In the above example, it will only store a 2 in the variable i,
truncating the fractional part.
Types that are smaller can be assigned to types that are the
same size or larger in size without an error.
Be aware of truncation when assigning floating point types to
integer types.
Keep your types the same on both sides of assignment
statements. It's not required, but it helps keep your program
clean and prevents unnecessary bugs. The compiler usually
helps you out with this.

1/28/2006 CSI 201 - Chapter 02 34

Type Compatibility Examples
Example:
int i;
double d = 21.5;
i = d;
Will the compiler report a warning message? Why or why not?

Example:
int i = 21;
double d;
d = i;
Will the compiler report an error? Why or why not?

Example:
int i;
short s;
s = i;
Will the compiler report an error? Not all compilers do! Should they?

Based on the previous variable declarations, what about:
i = s;

1/28/2006 CSI 201 - Chapter 02 35

General type compatibility rules
To be discussed in class:

assigning int to a double

assigning a double to an int

assigning a char to an int

assigning a bool to an int

assigning short to integer to long

assigning long to integer to short

assigning float to double

1/28/2006 CSI 201 - Chapter 02 36

Arithmetic operators
Operators include +,-,*,/
Arithmetic operators are forms of binary operators because
they take two operands before the expression can be evaluated.
+,-,* operate the same with both floating point types and integer
types
Using / with floating point types behaves normally
Using / with integer types truncates the fractional part.

31.0 / 5.0 is 6.2
31 / 5 is 6
1.0 / 2.0 is ?
1 / 2 is ?
1 / 2.0 is ? tricky… (answers in class)

1/28/2006 CSI 201 - Chapter 02 37

Modulus arithmetic operator - %
The result of a modulus (or mod) operation is
the remainder of an integer division.
Example:

31 / 6 = 5, what is the remainder?
Therefore, 31 % 6 =

(Answers given in class)

1/28/2006 CSI 201 - Chapter 02 38

More on Arithmetic Operators
Arithmetic operators can be used with any
numeric type, except the mod operator (%)

% operator only operates on integer types
An operand is a constant or variable
expression used by the operator
Result of an operator depends on the types
of the operands

If both operands are int, the result is int
If one or both operands are double, the result is
double

1/28/2006 CSI 201 - Chapter 02 39

Arithmetic Expressions
Precedence rules for operators are the same
as used in your algebra classes
Use parentheses to alter the order of
operations
x + y * z (y is multiplied by z first)
(x + y) * z (x and y are added first)
See book, Display 2.5, page 63 (70 in 4th ed.)
for more examples.
A complete set of C++ precedence rules are
given in Appendix 2.

1/28/2006 CSI 201 - Chapter 02 40

Examples
What does the following program output?
int number;
number = (1/3) * 3;

cout << number;

What does the following program output?
double c = 20;

double f;
f = (9/5) * c + 32.0;

cout << f;

If there's something wrong, how would you fix
the above?

1/28/2006 CSI 201 - Chapter 02 41

Shorthand Assignment Statements
+=, -= , *=, /=, %=
(Discussed in class)

1/28/2006 CSI 201 - Chapter 02 42

Increment and Decrement operators
++ and --
Discussed in class….

1/28/2006 CSI 201 - Chapter 02 43

Introduction of Flow of Control
There are times when you need to vary the
way your program executes based on given
input.
The order in which statements in your
program are executed is referred to as flow
of control.
Two methods of flow control will be
introduced – branching and looping.

1/28/2006 CSI 201 - Chapter 02 44

Branching
When you want your program to execute one of two
alternatives, you use the if - else statement.
Example, suppose we were to calculate hourly
wages, and overtime was allowed:

Regular time (up to 40 hours)
gross_pay = rate * hours;

Overtime (over 40 hours)
gross_pay = rate * 40 + 1.5 * rate * (hours
- 40);

The program must choose which of these
expressions to use

1/28/2006 CSI 201 - Chapter 02 45

if - else Syntax
The general syntax of the if – else statement is:

if (Boolean_expression)
statement1;

else

statement2;
A Boolean_expression is an expression that evaluates to
true or false.
If the Boolean_expression evaluates to true, then statement1
is executed, otherwise, statement2 is executed.
Boolean_expression can also be a numeric expression. If the
expression evaluates to zero, the expression is false,
otherwise, the expression is true.
The else part of the statement is optional.

1/28/2006 CSI 201 - Chapter 02 46

Block Statements
Block statements are a list of statements enclosed in a pair of
braces.
Required when you want your if or else to execute more than
one statement:

if (Boolean_expression)
{

yes_statement1;
…
yes_statement_last;

}
else
{

no_statement1;
…
no_statement_last;

}

We often recommend beginning students to always use block
statements to prevent unnecessary errors.

1/28/2006 CSI 201 - Chapter 02 47

Comparison Operators
Simple boolean
expressions use
comparison
operators to compare
two operands

1/28/2006 CSI 201 - Chapter 02 48

ex4.cpp
// ex4.cpp
// Written by Brian King
// Calculate a speeding fine.
// If the person was with 15 mph, the fine is a flat $100,
// otherwise, the fine is $100 plus $5 for every mph exceeded over 15 mph
#include <iostream>
using namespace std;

int main()
{
int speed, limit, fine;

cout << "Enter the speed limit: ";
cin >> limit;
cout << "Enter the speed you were driving: ";
cin >> speed;

if ((speed – limit) < 15)
fine = 100;

else
fine = 100 + (speed – limit - 15) * 5;

cout << "Your fine is $" << fine << endl;
return 0;

}

Notice the arithmetic expression
to the left of the <

1/28/2006 CSI 201 - Chapter 02 49

Logical Operators && and ||
&& - Logical "and" operator
|| - Logical "or" operator
Recall boolean logic from high school math

AND: If both operands evaluate to true, then the
expression is true, otherwise it is false.
OR: If either operand evaluates to true, then the
expression is true, otherwise it is false.

These give you a way to form more elaborate
boolean expressions
(Bool_expr_1) && (Bool_expr_2)

(Bool_expr_1) || (Bool_expr_2)

1/28/2006 CSI 201 - Chapter 02 50

Logical NOT Operator
! is the "NOT" Operator. It negates the result of a
Boolean expression.
Example:
if (!(x < 5))
is another way of saying "if x is NOT less than 5"
if (!(x == 5))
is another way of saying "if x is NOT equal to 5"

Side note:
An operator that operates on one operand only is called a
unary operator. ! is a unary operator.
An operator that operates on two operators is called a
binary operator. && and || are binary operators.

1/28/2006 CSI 201 - Chapter 02 51

More on Boolean Expressions
Suppose you wanted to check to see if a integer variable x was greater than 10
and less than 20:
In math, it's common to think (10 < x < 20). Don't write your boolean expressions
this way!

if (10 < x < 20) // this is an ERROR!

Your if statement would be:
if ((x > 10) && (x < 20))

Be careful to use == when testing equality and not =
Example: Suppose you have the following code:
int x;
x = 0;
if (x = 3)

cout << "x contains the number 3.\n";
else

cout << "x does not contain the number 3.\n";

This will not produce an error:
It evaluates the boolean expression for the if statement.
This results in storing the value 3 into x. Therefore, the expression itself evaluates to 3.
Therefore, the expression returns true, because it is non-zero! Not what was intended.

1/28/2006 CSI 201 - Chapter 02 52

ex5.cpp
// ex5.cpp
// Written by Brian King
// Purpose: Calculate a speeding fine.
#include <iostream>
using namespace std;

int main()
{
int speed, limit, fine;

cout << "Enter the speed limit :";
cin >> limit;
cout << "Enter the speed you were driving: ";
cin >> speed;

if ((speed - limit > 5) && (speed - limit < 15))
fine = 100;

else
fine = 100 + (speed - limit - 15) * 5;

// Don't output a fine if they weren't speeding!
if (speed - limit > 5)

cout << "Your fine is $" << fine << endl;
else

cout << "Good driver!" << endl;

return 0;
}

Illustrates a complex boolean
expression.

1/28/2006 CSI 201 - Chapter 02 53

ex6.cpp
#include <iostream>
using namespace std;

int main()
{

int speed, limit, fine, exceeded;

cout << "Enter the speed limit :";
cin >> limit;
cout << "Enter the speed you were driving: ";
cin >> speed;

// Calculate the amount they went over the speed limit
exceeded = speed – limit;

if ((exceeded > 5) && (exceeded < 15))
fine = 100;

else
fine = 100 + (exceeded - 15) * 5;

if (exceeded > 5)
{

cout << "Your fine is $" << fine << endl;
if (exceeded >= 15)

cout << "Bad driver! Naughty!" << endl;
}
else

cout << "Good driver!" << endl;

return 0;
}

Illustrates use of block
statements.
Shows how an if statement can
be embedded within an if
statement.

1/28/2006 CSI 201 - Chapter 02 54

Simple Loop Mechanism
Many programs include code that need to be
repeated many times.

Perhaps you have a grading program. You want
to repeat your grading program for each test you
collected.

C++ contains numerous ways to create
loops.
We will introduce the while loop and do-
while loop.

1/28/2006 CSI 201 - Chapter 02 55

The while loop
Syntax of the while loop:
while (Boolean_expression)
{

Statement_1;
…
Statement_Last;

}
The statements between the braces are called the
body of the loop.

(Again, notice that it's just a block statement.)
Each execution of the body of the loop is called an
iteration of the loop.
NOTE: If you only have one statement that you
need to loop on, you can omit the braces.

1/28/2006 CSI 201 - Chapter 02 56

How the while loop works
while (Boolean_expression)
{

Statement_body;
}
next_statement;

First, the boolean expression is evaluated
If false, the program skips to the line following the while loop
If true, the body of the loop is executed

During execution, some item from the boolean expression is
changed. This is known as the altering statement.

After executing the loop body, the boolean expression is
checked again repeating the process until the expression
becomes false

The body of a while loop will not execute at all if the boolean
expression is false on the first check

1/28/2006 CSI 201 - Chapter 02 57

ex7.cpp
#include <iostream>
using namespace std;
int main()
{

int count_down;

cout << "How many greetings do you want? ";
cin >> count_down;

while (count_down > 0)
{

cout << "Hello ";
count_down = count_down - 1;

}

cout << endl;
cout << "That's all!\n";

return 0;
}

Illustrates use of a while loop.

What is the boolean
expression?

What is the body of the loop?
Which statement is the altering

statement?

1/28/2006 CSI 201 - Chapter 02 58

ex8.cpp – A factorial program
#include <iostream>
using namespace std;

int main()
{
int num, fac, i;

cout << "Enter a number and I'll return the factorial: " << endl;
cin >> num;

// 0! is 1, so initialize fac to be 1.
fac = 1;
i = num;

while (i > 0)
{
fac = fac * i;
i = i - 1;

}

cout << "The factorial of " << num
<< " is " << fac << endl;

return 0;
}

Illustrates the use of a while
loop.

1/28/2006 CSI 201 - Chapter 02 59

The do-while loop
Syntax of the do-while loop:
do
{

Statement_1;
…
Statement_Last;

} while (Boolean_expression);
Similar to the while loop, except that the boolean
expression is checked at the end of the loop instead
of the beginning.
The body of a do-while loop is always executed at
least once.
Don't forget the semi-colon at the end!

1/28/2006 CSI 201 - Chapter 02 60

ex9.cpp – Interactive factorial program
int main()
{

int num, fac, i;
char ans;

do
{

cout << "Enter a number and I'll return the factorial: " << endl;
cin >> num;

// 0! is 1, so initialize fac to be 1.
fac = 1;
i = num;

while (i > 0)
{

fac = fac * i;
i = i - 1;

}

cout << "The factorial of " << num
<< " is " << fac << endl;

// Ask user to try again
cout << "Try again? [y|n] ";
cin >> ans;

} while (ans == 'y' || ans == 'Y');

return 0;
}

Illustrates the use of a
do-while loop.
Shows how to interact
with the user to repeat
an action.

1/28/2006 CSI 201 - Chapter 02 61

Infinite Loops
Be careful to be sure your loop can exit properly.
A loop that runs forever is called an infinite loop.
Example:
int x = 1;

while (x != 10)

{

cout << x << endl;

x += 2;

}

Why does this loop run forever?

1/28/2006 CSI 201 - Chapter 02 62

Comments in C++
Comments start with //
Everything after // is ignored by the compiler.
You may also see comments using /* and */.

/* This is a comment */

Everything between /* and */ is ignored by the compiler, even if it
expands multiple lines.
A comment should explain code that is not immediately obvious!
Should document variables where they are declared.
Don't add obvious comments:

int x; // This is a variable. (DUH!)
See class web site for assignment grading guidelines for
information on comments in your program.

1/28/2006 CSI 201 - Chapter 02 63

#include directives and using namespace
#include <library_name>

library_name refers to a header file that declares
numerous types and identifiers pertinent to the
library.
This informs the compiler that a specific library
called library_name is going to be used in your
program.

Example: #include <iostream>

using namespace std;
This allows your program to use certain constants
and identifiers that have been defined in the
library.

1/28/2006 CSI 201 - Chapter 02 64

Constants – The const keyword
There are times when you want to "hard-wire"
values in your program.
Example: In our speeding fine program, we could
have hard coded the speed limit variable in the
program.
To do so, you use the const keyword.
Using const tells the compiler to do extra checking
to ensure you didn't write any code that modifies the
variable.
const is a called a modifier because it places a
restriction on the declaration tied to it.
Typically, const identifiers are all UPPERCASE
letters. This is a convention, not a requirement.

1/28/2006 CSI 201 - Chapter 02 65

ex10.cpp
#include <iostream>
using namespace std;
int main()
{

const int SPEED_LIMIT = 55;
int speed, fine, exceeded;

cout << "The speed limit is " << SPEED_LIMIT << ".\n";
cout << "Enter the speed you were driving: ";
cin >> speed;

exceeded = speed - SPEED_LIMIT;

if ((exceeded > 5) && (exceeded < 15))
fine = 100;

else
fine = 100 + (exceeded - 15) * 5;

if (exceeded > 5)
{

cout << "You were driving " << exceeded
<< " miles over the speed limit." << endl;

cout << "Your fine is $" << fine << endl;

if (exceeded >= 15)
cout << "Bad driver! Naughty!" << endl;

}
else

cout << "Good driver!" << endl;

return 0;
}

1/28/2006 CSI 201 - Chapter 02 66

Design style
Indentation makes your program easier to read!
You will get a point or two deducted if you do not
follow appropriate style as outlined on the class
website.

Indentation
Body inside while, do-while, if-else, etc… should be
indented
Braces delimiting compound statements should be aligned
together.
Comments
Meaningful variable names
Consistency of indentation, brace alignment, etc..

1/28/2006 CSI 201 - Chapter 02 67

The End

